© 2016 by William D. Leavitt


For the most up-to-date listing of our publications, please visit my Google Scholar profile.

Bertran E, Leavitt WD, Pellerin A, Zane GM., Wall JD., Halevy I, Wing BA., Johnston DT, 2018. Deconstructing the Dissimilatory Sulfate Reduction Pathway: Isotope Fractionation of a Mutant Unable of Growth on Sulfate: Frontiers in Microbiology.


Leavitt WD, Murphy SJL, Lynd LR, Bradley AS, 2017. Hydrogen isotope composition of Thermoanaerobacterium saccharolyticum lipids: Comparing wild type with a nfn-transhydrogenase mutant: Organic Geochemistry 113, 239-241.

doi: 10.1016/j.orggeochem.2017.06.020

Bradley AS, Leavitt WD, Schmidt M, Knoll AH, Girguis PR, Johnston DT, 2016. Patterns of sulfur isotope fractionation during microbial sulfate reduction: Geobiology 14 (1), 91-101.

doi: 10.1111/gbi.12149


Fike DA, Bradley AS, Leavitt WD, 2016. Geomicrobiology of Sulfur.



Leavitt WD, Flynn TM, Suess MK, Bradley AS, 2016. Transhydrogenase and Growth Substrate Influence Lipid Hydrogen Isotope Ratios in Desulfovibrio alaskensis G20: Frontiers in Microbiology.

doi: 10.3389/fmicb.2016.00918


Leavitt WD, Venceslau SS, Pereira IAC, Johnston DT, Bradley AS, 2016. Fractionation of sulfur and hydrogen isotopes in Desulfovibrio vulgaris with perturbed DsrC expression: FEMS Microbiology Letters 363 (20), fnw226.

doi: 10.1093/femsle/fnw226


Leavitt WD, Bradley AS, Santos AA, Pereira IAC, Johnston DT, 2015. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase: Frontiers in Microbiology 6.

doi: 10.3389/fmicb.2015.01392


Santos AA, Venceslau SS, Grein F, Leavitt WD, Dahl C, Johnston DT, Pereira IAC, 2015. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation: Science 350 (6267), 1541-1545.

doi: 10.1126/science.aad3558


Leavitt, WD, 2014. On the mechanisms of sulfur isotope fractionation during microbial sulfate reduction. Doctoral dissertation, Harvard University.  



Leavitt WD, Cummins R, Schmidt ML, Sim MS, Ono S, Bradley AS, Johnston DT, 2014. Multiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20: Frontiers in Microbiology 5.

doi: 10.3389/fmicb.2014.00591


Reardon CL, Magnuson TS, Boyd ES, Leavitt WD, Reed DW, Geesey GG, 2014. Hydrogenase Activity of mineral-associated and suspended populations of Desulfovibrio desulfuricans Essex 6: Microbial Ecology 67 (2), 318-326.

doi: 10.1007/s00248-013-0308-y


Leavitt WD, Halevy I, Bradley AS, Johnston DT, 2013. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record: Proceedings of the National Academy of Sciences 110 (28), 11244-11249.



Bradley AS, Leavitt WD, Johnston DT, 2011. Revisiting the dissimilatory sulfate reduction pathway: Geobiology 9 (5), 446-457.

doi: 10.1111/j.1472-4669.2011.00292.x


Boyd ES, Leavitt WD, Geesey GG, 2009. CO2 uptake and fixation by a thermoacidophilic microbial community attached to precipitated sulfur in a geothermal spring: Applied and Environmental Microbiology 75 (13), 4289-4296.

doi: 10.1128/AEM.02751-08


Pearson A, Leavitt WD, Saenz JP, Summons RE, Tam MCM, Close HG, 2009. Diversity of hopanoids and squalene‐hopene cyclases across a tropical land‐sea gradient: Environmental Microbiology 11 (5), 1208-1223.

doi: 10.1111/j.1462-2920.2008.01817.x

Pearson A, Leavitt WD, Saenz JP, Tam MCM, 2008. Culture-independent methods reveal the primary sources of hopanoid lipid biomarkers: Environmental Microbiology 9, 2175-2188.


Pearson A, Kraunz KS, Sessions AL, Dekas AE, Leavitt WD, Edwards KJ, 2008. Quantifying microbial utilization of petroleum hydrocarbons in salt marsh sediments by using the 13C content of bacterial rRNA: Applied and Environmental Microbiology 74 (4), 1157-1166.

doi: 10.1128/AEM.01014-07


Boyd ES, Jackson RA, Encarnacion G, Zahn JA, Beard T, Leavitt WD, Pi Y, Zhang CL, Pearson A, Geesey GG, 2007. Isolation, characterization, and ecology of sulfur-respiring crenarchaea inhabiting acid-sulfate-chloride-containing geothermal springs in Yellowstone National Park: Applied and Environmental Microbiology 73 (20), 6669-6677.

doi: 10.1128/AEM.01321-07